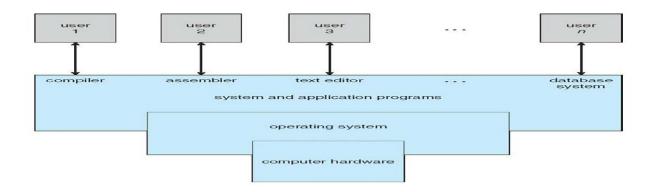
UNIT-I

OVER VIEW OF OPERATING SYSTEM

What is an Operating System?

A program that acts as an intermediary between a user of a computer and the computer hardware Operating system goals:

- Execute user programs and make solving user problems easier
- Make the computer system convenient to use
- Use the computer hardware in an efficient manner


Computer System Structure

Computer system can be divided into four components

- Hardware provides basic computing resources
 - □ CPU, memory, I/O devices
- Operating system
 - □ Controls and coordinates use of hardware among various applications and users
- Application programs define the ways in which the system resources are used to solve the computing problems of the users
 - \square Word processors, compilers, web browsers, database systems, video games
- Users

 \Box People, machines, other computers

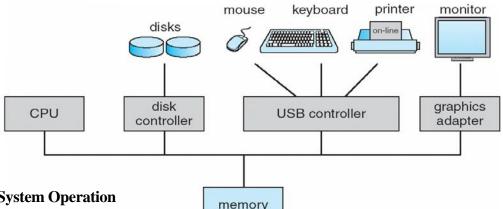
Four Components of a Computer System

Operating System Definition

- OS is a resource allocator
- Manages all resources

Decides between conflicting requests for efficient and fair

resource use


- OS is a control program
- Controls execution of programs to prevent errors and improper use of the computer
- No universally accepted definition
- Everything a vendor ships when you order an operating system" is good approximation But varies wildly
- "The one program running at all times on the computer" is the **kernel.** Everything else is either a system program (ships with the operating system) or an application program

Computer Startup

- **bootstrap program** is loaded at power-up or reboot
- Typically stored in ROM or EPROM, generally known as firmware
- Initializes all aspects of system
- Loads operating system kernel and starts execution

Computer System Organization

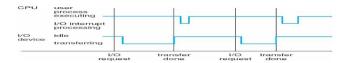
- Computer-system operation
- One or more CPUs, device controllers connect through common bus providing access to shared memory
- Concurrent execution of CPUs and devices competing for memory cycles

Computer-System Operation

- I/O devices and the CPU can execute concurrently
- Each device controller is in charge of a particular device type
- Each device controller has a local buffer
- CPU moves data from/to main memory to/from local buffers
- I/O is from the device to local buffer of controller
- Device controller informs CPU that it has finished its operation by causing An *interrupt*

Common Functions of Interrupts

• Interrupt transfers control to the interrupt service routine generally, through the interrupt vector, which contains the addresses of all the service routines


- Interrupt architecture must save the address of the interrupted instruction
- Incoming interrupts are *disabled* while another interrupt is being processed to prevent a *lost interrupt*nA *trap* is a software-generated interrupt caused either by an error or a user request

• An operating system is **interrupt driven**

Interrupt Handling

- The operating system preserves the state of the CPU by storing registers and the program counter
- Determines which type of interrupt has occurred:
- polling
- vectored interrupt system
- Separate segments of code determine what action should be taken for each type of interrupt

Interrupt Timeline

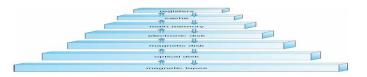
I/O Structure

- After I/O starts, control returns to user program only upon I/O completion
- Wait instruction idles the CPU until the next interrupt
- Wait loop (contention for memory access)
- At most one I/O request is outstanding at a time, no simultaneous I/O processing
- After I/O starts, control returns to user program without waiting for I/O completion
- System call request to the operating system to allow user to wait for I/O completion
- Device-status table contains entry for each I/O device indicating its type, address, and state
- Operating system indexes into I/O device table to determine device status and to modify table entry to include interrupt

Direct Memory Access Structure

- Used for high-speed I/O devices able to transmit information at close to memory speeds
- Device controller transfers blocks of data from buffer storage directly to main memory without CPU intervention
- Only one interrupt is generated per block, rather than the one interrupt per byte

Storage Structure


- Main memory only large storage media that the CPU can access directly
- Secondary storage extension of main memory that provides large nonvolatile storage capacity
- Magnetic disks rigid metal or glass platters covered with magnetic recording material
- Disk surface is logically divided into tracks, which are subdivided into sectors

• The disk controller determines the logical interaction between the device and the computer

Storage Hierarchy

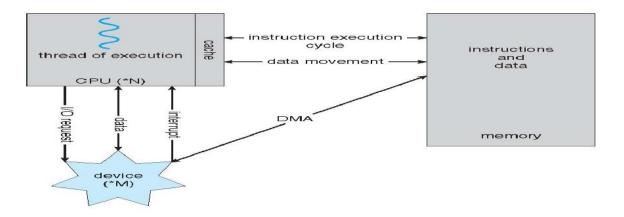
- Storage systems organized in hierarchy
- Speed
- Cost
- Volatility

Caching - copying information into faster storage system; main memory can be viewed as a last *cache* for secondary storage

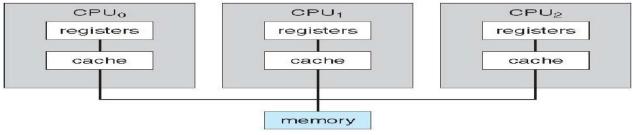
Caching

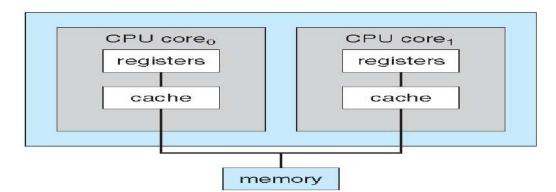
- Important principle, performed at many levels in a computer (in hardware, operating system, software)
- Information in use copied from slower to faster storage temporarily
- Faster storage (cache) checked first to determine if information is there
- If it is, information used directly from the cache (fast)
- If not, data copied to cache and used there
- Cache smaller than storage being cached
- Cache management important design problem
- Cache size and replacement policy

Computer-System Architecture


- Most systems use a single general-purpose processor (PDAs through mainframes)
- Most systems have special-purpose processors as well
- Multiprocessors systems growing in use and importance •
- Also known as parallel systems, tightly-coupled systems

Advantages include


- 1.Increased throughput
- 2.Economy of scale
- 3.Increased reliability graceful degradation or fault tolerance


Two types

- 1.Asymmetric Multiprocessing
- 2.Symmetric Multiprocessing

How a Modern Computer Works Symmetric Multiprocessing Architecture

Clustered Systems

- Like multiprocessor systems, but multiple systems working together
- Usually sharing storage via a storage-area network (SAN)
- Provides a high-availability service which survives failures
 Asymmetric clustering has one machine in hotstandby mode
 Symmetric clustering has multiple nodes running applications, monitoring each other
- Some clusters are for high-performance computing (HPC)

 Applications must be written to use parallelization

Operating System Structure

- Multiprogramming needed for efficiency
- Single user cannot keep CPU and I/O devices busy at all times
- Multiprogramming organizes jobs (code and data) so CPU always has one to Execute
- A subset of total jobs in system is kept in memory
- One job selected and run via job scheduling
- When it has to wait (for I/O for example), OS switches to another job
- **Timesharing (multitasking)** is logical extension in which CPU switches jobs so frequently that users can interact with each job while it is running, creating **interactive** computing
- **Response time** should be < 1 second
- Each user has at least one program executing in memory [process
- If several jobs ready to run at the same time [CPU scheduling
- If processes don't fit in memory, **swapping** moves them in and out to run

Virtual memory allows execution of processes not completely in memory

Memory Layout for Multiprogrammed System

0	
	operating system
	job 1
	6 job 2

Operating System Services

	GUI 6/	atch command line			
	ummr ir	terfaces			
	syste	m calls			
			-		
program operation	ons systems	communication	allocation	accounting	
detection			protec	ation	
detection		services		and ecourity	
		ng system Iware			

One set of operating-system services provides functions that are helpful to the user

(Cont):lCommunications - Processes may exchange information, on the same computer or between computers over a network

□ Communications may be via shared memory or through message passing (packets moved by the OS)

• Error detection - OS needs to be constantly aware of possible errors

 $\hfill\square$ May occur in the CPU and memory hardware, in I/O devices, in user program

 $\hfill\square$ For each type of error, OS should take the appropriate action to ensure correct and consistent computing

 $\hfill\square$ Debugging facilities can greatly enhance the user's and programmer's abilities to efficiently use the system

- Another set of OS functions exists for ensuring the efficient operation of the system itself via resource sharing
- **Resource allocation** When multiple users or multiple jobs running concurrently, resources must be allocated to each of them
- Accounting To keep track of which users use how much and what kinds of computer resources
- **Protection and security** The owners of information stored in a multiuser or networked computer system may want to control use of that information, concurrent processes should not interfere with each other
- **Protection** involves ensuring that all access to system resources is controlled
- Security of the system from outsiders requires user authentication, extends to defending external I/O devices from invalid access attempts
- If a system is to be protected and secure, precautions must be instituted throughout it. A chain is only as strong as its weakest link.